流体动力学专论(英文版)
资料介绍
流体动力学专论(英文版)
出版时间:2011年版
内容简介
《流体动力学专论》内容A Treatise in Fluid Dynamics is a textbook for beginning engineering students who have background ofbasic calculus and'physics. This textbook follows a typical sequence of topics of dynamics of fluids by startingwith an introduction to the subject, concentrating on terminologies, simple concepts, and clarifying adoption ofthe system and control volume approach to describe the motion of the fluid. It then follows by unsteady im-pressible incompressible flows, impressible potential flows, numerical computation of fluid dynamic problems,viscous flows, and open channel flows. A large numbers of examples, such as sluice gate, a sharp crestedweir, jet-plate interaction, etc. , are presented throughout the textbook to emphasize the applications of fluiddynamics to various practical problems. Some simple Fortran computer programs are provided for calculatingincompressible potential flow past simple geometrical bodies based upon surface source distributions and otherproblems. As this textbook is the extended version of the lecture notes prepared by the first author throughouthis career of teaching and research in the areas of gas dynamics, fluid dynamics and thermodynamics at theUniversity of Illinois at Urbana-Champaign and Florida Atlantic University, it can serve as a useful referencebook for graduate students and researchers in the related technical fields.
目录
CHAPTER 1 BASIC EQUATIONS GOVERNING THE FLOW OF FLUIDS
1.1BASIC PRINCIPLES
1.2BASIC CONCEPTS IN THE FORMULATION OF THE FLOW OF A FLUID
1.2.1 Lagrangian Formulation
1.2.2 Eulerian Formulation
1.2.3 Differentiation in The Eulerian Scheme
1. 2.4 System and Control Volume Concepts
1.3 INTEGRAL THEOREMS
1.3.1 Green's Theorem (Gauss Theorem)
1.3.2 Stokes Theorem
1.3.3 The Dot, Cross and Dyadic Multiplication
1.3.4 The Stress Tensor and the Constitutive Relationship for a Newtonian Fluid
1.4 BASIC PRINCIPLES AND THEIR APPLICATIONSTO THE FLUID IN MOTION
1.4.1 The Principle of Conservation of Massthe Continuity Equation
1.4.2 The Momentum Principle
1.4.3 Streamline, Path-line, Streak-line, and Stream Filament
1.4.4 The Streamline System of Coordinates
1.5 ENERGY PRINCIPLE
1.5.1 The First Law of Thermodynamics
1.5.2 The Differential Equation for the Energy Principle
1.6STREAM FUNCTION FOR STEADY TWO DIMENSION AND AXIAL-SYM-METRIC FLOWS
1.6.1 Stream Function for Two Dimensional Flows
1.6.2 Stream Function for Axially Symmetric Flows
1.7 SUMMARYREFERENCES
CHAPTER2 APPLICATION OF BERNOULLI's PRINCIPLE TO SOMEINCOMPRESSIBLE FLOWS
2.1 ACCELERATION OF THE FLOW TOWARD THE STEADY FLOW SOLUTION
2.2 FLOW THROUGH AN L-SHAPED TUBE OF CONSTANT AREA
2.3 DISCHARGE OF AN INCOMPRESSIBLE FLUID THROUGH A NOZZLE
2.4 QUASI-STEADY FLOW ANALYSIS ON FLOW PROBLEMS
2.5 OTHER EXAMPLES OF FLOW WITH SPHERICAL SYMMETRY
2.5.1 The Pressure Field within an Infinite Amount of Fluid
2.5.2 The Motion of an Incompressible Fluid due to the Attractive Field Force
2.5.3 The Motion of a Finite Amount of Fluid with Spherical Symmetry
2.6 SUMMARYREFERENCE
CHAPTER 3 POTENTIAL FLOW OF AN IDEAL FLUID
3.1 THE VELOCITY POTENTIAL FUNCTION AND THECONDITION OF ITS EXISTENCE
……
CHAPTER 4 NUMERICAL COMPUTATIONS ON FLUID DYNAMIC PROBLEMS——WITH EMPHASIS ON INVISCID FLOWS
CHAPTER 5 VISCOUS FLOWS INTRODUCTION
CHAPTER 6 OPEN CHANNEL FLOWS INTRODUCTION
APPENDIX A A REVIEW OF VECTOR-ANALYSIS
APPENDIX B VARIOUS VECTOR EXPRESSIONS IN ORTHOGONAL CURVILINEAR SYSTEM OF COORDINATES
APPENDIX C MATHEMATIC PROCEDURE TO COMPUTE VENA-CONTRACTING COEFFICIENTS
出版时间:2011年版
内容简介
《流体动力学专论》内容A Treatise in Fluid Dynamics is a textbook for beginning engineering students who have background ofbasic calculus and'physics. This textbook follows a typical sequence of topics of dynamics of fluids by startingwith an introduction to the subject, concentrating on terminologies, simple concepts, and clarifying adoption ofthe system and control volume approach to describe the motion of the fluid. It then follows by unsteady im-pressible incompressible flows, impressible potential flows, numerical computation of fluid dynamic problems,viscous flows, and open channel flows. A large numbers of examples, such as sluice gate, a sharp crestedweir, jet-plate interaction, etc. , are presented throughout the textbook to emphasize the applications of fluiddynamics to various practical problems. Some simple Fortran computer programs are provided for calculatingincompressible potential flow past simple geometrical bodies based upon surface source distributions and otherproblems. As this textbook is the extended version of the lecture notes prepared by the first author throughouthis career of teaching and research in the areas of gas dynamics, fluid dynamics and thermodynamics at theUniversity of Illinois at Urbana-Champaign and Florida Atlantic University, it can serve as a useful referencebook for graduate students and researchers in the related technical fields.
目录
CHAPTER 1 BASIC EQUATIONS GOVERNING THE FLOW OF FLUIDS
1.1BASIC PRINCIPLES
1.2BASIC CONCEPTS IN THE FORMULATION OF THE FLOW OF A FLUID
1.2.1 Lagrangian Formulation
1.2.2 Eulerian Formulation
1.2.3 Differentiation in The Eulerian Scheme
1. 2.4 System and Control Volume Concepts
1.3 INTEGRAL THEOREMS
1.3.1 Green's Theorem (Gauss Theorem)
1.3.2 Stokes Theorem
1.3.3 The Dot, Cross and Dyadic Multiplication
1.3.4 The Stress Tensor and the Constitutive Relationship for a Newtonian Fluid
1.4 BASIC PRINCIPLES AND THEIR APPLICATIONSTO THE FLUID IN MOTION
1.4.1 The Principle of Conservation of Massthe Continuity Equation
1.4.2 The Momentum Principle
1.4.3 Streamline, Path-line, Streak-line, and Stream Filament
1.4.4 The Streamline System of Coordinates
1.5 ENERGY PRINCIPLE
1.5.1 The First Law of Thermodynamics
1.5.2 The Differential Equation for the Energy Principle
1.6STREAM FUNCTION FOR STEADY TWO DIMENSION AND AXIAL-SYM-METRIC FLOWS
1.6.1 Stream Function for Two Dimensional Flows
1.6.2 Stream Function for Axially Symmetric Flows
1.7 SUMMARYREFERENCES
CHAPTER2 APPLICATION OF BERNOULLI's PRINCIPLE TO SOMEINCOMPRESSIBLE FLOWS
2.1 ACCELERATION OF THE FLOW TOWARD THE STEADY FLOW SOLUTION
2.2 FLOW THROUGH AN L-SHAPED TUBE OF CONSTANT AREA
2.3 DISCHARGE OF AN INCOMPRESSIBLE FLUID THROUGH A NOZZLE
2.4 QUASI-STEADY FLOW ANALYSIS ON FLOW PROBLEMS
2.5 OTHER EXAMPLES OF FLOW WITH SPHERICAL SYMMETRY
2.5.1 The Pressure Field within an Infinite Amount of Fluid
2.5.2 The Motion of an Incompressible Fluid due to the Attractive Field Force
2.5.3 The Motion of a Finite Amount of Fluid with Spherical Symmetry
2.6 SUMMARYREFERENCE
CHAPTER 3 POTENTIAL FLOW OF AN IDEAL FLUID
3.1 THE VELOCITY POTENTIAL FUNCTION AND THECONDITION OF ITS EXISTENCE
……
CHAPTER 4 NUMERICAL COMPUTATIONS ON FLUID DYNAMIC PROBLEMS——WITH EMPHASIS ON INVISCID FLOWS
CHAPTER 5 VISCOUS FLOWS INTRODUCTION
CHAPTER 6 OPEN CHANNEL FLOWS INTRODUCTION
APPENDIX A A REVIEW OF VECTOR-ANALYSIS
APPENDIX B VARIOUS VECTOR EXPRESSIONS IN ORTHOGONAL CURVILINEAR SYSTEM OF COORDINATES
APPENDIX C MATHEMATIC PROCEDURE TO COMPUTE VENA-CONTRACTING COEFFICIENTS
相关资料
- 高等统计力学导论 第二版 梁希侠 编著 2019年版
- 量子电动力学 第2版 英文版 (美)Berestetskii,V.B.等著
- 国外优秀物理著作原版系列 量子力学与经典力学之间的联系在原子、分子及电动力学系统建模中的应用 英文版 (罗)波帕(A Popa) 著 2016年版
- 量子力学、统计学、聚合物物理学和金融市场中的路径积分 第2分册 第5版 英文影印版 (德)克莱尼特 著 2015年版
- 量子力学 少年版 曹则贤 著 2017年版
- 量子关联的动力学性质 仇亮,石礼伟,寻之朋 著 2015年版
- 量子关联及其动力学性质 郭志华 著 2019年版
- 统计力学 第2版 英文版 Morandi,G.等 著 2005年版
- 理解科学丛书 1小时科普 量子力学 朱梓忠 著 2018年版
- 热力学敏感流体空化基础理论与数值计算 邹丽,孙铁志,马相孚 著 2018年版