您当前的位置:首页 > 行业图书 > 自然科学

科学计算中的蒙特卡罗策略 英文版 JUNS.LIU 著 2005年版

  • [下载地址1]   [下载地址2]
  • 文件大小:21.49 MB
  • 标准类型:行业图书
  • 标准语言:英文版
  • 授权形式:免费
  • 文件类型:PDF文档
  • 安全检测:360:安全
  • 下载次数:3121   加入收藏
  • 标签

资料介绍

科学计算中的蒙特卡罗策略 英文版
作者: JUNS.LIU 著
出版时间:2005年版
丛编项: Springer Series in Statistics
内容简介
  An early experiment that conceives the basic idea of Monte Carlo compu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to compute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.此书为英文版!
目录
Preface
1IntroductionandExamples
1.1TheNeedofMonteCarloTechniques
1.2ScopeandOutlineoftheBook
1.3ComputationsinStatisticalPhysics
1.4MolecularStructureSimulation
1.5Bioinformatics:FindingWeakRepetitivePatterns
1.6NonlinearDynamicSystem:TargetTracking
1.7HypothesisTestingforAstronomicalObservations
1.8BayesianInferenceofMultilevelModels
1.9MonteCarloandMissingDataProblems
BasicPrinciples:Rejection,Weighting,andOthers
2.1GeneratingSimpleRandomVariables
2.2TheRejectionMethod
2.3VarianceReductionMethods
2.4ExactMethodsforChain-StructuredModels
2.4.1Dynamicprogramming
2.4.2Exactsimulation
2.5ImportanceSamplingandWeightedSample
2.5.1Anexample
2.5.2Thebasicidea
2.5.3The"ruleofthumb"forimportancesampling
2.5.4Conceptoftheweightedsample
2.5.5Marginalizationinimportancesampling
2.5.6Example:Solvingalinearsystem
2.5.7Example:ABayesianmissingdataproblem
2.6AdvancedImportanceSamplingTechniques
2.6.1Adaptiveimportancesampling
2.6.2Rejectionandweighting
2.6.3Sequentialimportancesampling
2.6.4Rejectioncontrolinsequentialimportancesampling
2.7ApplicationofSISinPopulationGenetics
2.8Problems
TheoryofSequentialMonteCarlo
3.1EarlyDevelopments:GrowingaPolymer
3.1.1Asimplemodelofpolymer:Self-avoidwalk
3.1.2Growingapolymeronthesquarelattice
3.1.3Limitationsofthegrowthmethod
3.2SequentialImputationforStatisticalMissingDataProblems
3.2.1Likelihoodcomputation
3.2.2Bayesiancomputation
3.3NonlinearFiltering
3.4AGeneralFramework
3.4.1Thechoiceofthesamplingdistribution
3.4.2Normalizingconstant
3.4.3Pruning,enrichment,andresampling
3.4.4Moreaboutresampling
3.4.5Partialrejectioncontrol
3.4.6Marginalization,look-ahead,anddelayedestimate
3.5Problems
SequentialMonteCarloinAction
4.1SomeBiologicalProblems
4.1.1MolecularSimulation
4.1.2Inferenceinpopulationgenetics
4.1.3FindingmotifpatternsinDNAsequences
4.2ApproximatingPermanents
4.3Counting0-1TableswithFixedMargins
4.4BayesianMissingDataProblems
4.4.1Murray'sdata
4.4.2NonparametricBayesanalysisofbinomialdata
4.5ProblemsinSignalProcessing
4.5.1TargettrackinginclutterandmixtureKalmanfilter
4.5.2Digitalsignalextractioninfadingchannels
4.6Problems
MetropolisAlgorithmandBeyond
5.1TheMetropolisAlgorithm
5.2MathematicalFormulationandHastings'sGeneralization
5.3WhyDoestheMetropolisAlgorithmWork?
5.4SomeSpecialAlgorithms
5.4.1Random-walkMetropolis
5.4.2Metropolizedindependencesampler
5.4.3ConfigurationalbiasMonteCarlo
5.5MultipointMetropolisMethods
5.5.1Multipleindependentproposals
5.5.2Correlatedmultipointproposals
5.6ReversibleJumpingRule
5.7DynamicWeighting
5.8OutputAnalysisandAlgorithmEfficiency
5.9Problems
TheGibbsSampler
6.1GibbsSamplingAlgorithms
6.2IllustrativeExamples
6.3SomeSpecialSamplers
6.3.1Slicesampler
6.3.2MetropolizedGibbssampler
6.3.3Hit-and-runalgorithm
6.4DataAugmentationAlgorithm
6.4.1Bayesianmissingdataproblem
6.4.2TheoriginalDAalgorithm
6.4.3ConnectionwiththeGibbssampler
6.4.4Anexample:HierarchicalBayesmodel
6.5FindingRepetitiveMotifsinBiologicalSequences
6.5.1AGibbssamplerfordetectingsubtlemotifs
6.5.2Alignmentandclassification
6.6CovarianceStructuresoftheGibbsSampler
6.6.1DataAugmentation
6.6.2Autocovariancesfortherandom-scanGibbssampler
6.6.3MoreefficientuseofMonteCarlosamples
6.7CollapsingandGroupinginaGibbsSampler
6.8Problems
7ClusterAlgorithmsfortheIsingModel
7.1IsingandPottsModelRevisit
7.2TheSwendsen-WangAlgorithmasDataAugmentation
7.3ConvergenceAnalysisandGeneralization
7.4TheModificationbyWolff
7.5FurtherGeneralization
7.6Discussion
7.7Problems
GeneralConditionalSampling
8.1PartialResampling
8.2CaseStudiesforPartialResampling
8.2.1Gaussianrandomfieldmodel
8.2.2Texturesynthesis
8.2.3Inferencewithmultivariatet-distribution
8.3TransformationGrSupandGeneralizedGibbs
8.4Application:ParameterExpansionforDataAugmentation
8.5SomeExamplesinBayesianInference
8.5.1Probitregression
8.5.2MonteCarlobridgingforstochasticdifferentialequa-tion
8.6Problems
9MolecularDynamicsandHybridMonteCarlo
9.1BasicsofNewtonianMechanics
9.2MolecularDynamicsSimulation
9.3HybridMonteCarlo
9.4AlgorithmsRelatedtoHMC
9.4.1Langevin-Eulermoves
9.4.2GeneralizedhybridMonteCarlo
9.4.3Surrogatetransitionmethod
9.5MultipointStrategiesforHybridMonteCarlo
9.5.1Neal'swindowmethod
9.5.2Multipointmethod
9.6ApplicationofHMCinStatistics
9.6.1Indirectobservationmodel
9.6.2Estimationinthestochasticvolatilitymodel
10MultilevelSamplingandOptimizationMethods
10.1UmbrellaSampling
10.2SimulatedAnnealing
10.3SimulatedTempering
10.4ParallelTempering
10.5GeneralizedEnsembleSimulation
10.5.1Multicanonicalsampling
10.5.2The1/k-ensemblemethod
10.5.3Comparisonofalgorithms
10.6TemperingwithDynamicWeighting
10.6.1Isingmodelsimulationatsub-criticaltemperature
10.6.2Neuralnetworktraining
11Population-BasedMonteCarloMethods
11.1AdaptiveDirectionSampling:SnookerAlgorithm
11.2ConjugateGradientMonteCarlo
11.3EvolutionaryMonteCarlo
11.3.1Evolutionarymovementsinbinary-codedspace
11.3.2Evolutionarymovementsincontinuousspace
11.4SomeFurtherThoughts
11.5NumericalExamples
11.5.1Simulatingfromabimodaldistribution
11.5.2Comparingalgorithmsforamultimodalexample
11.5.3Variableselectionwithbinary-codedEMC
11.5.4Bayesianneuralnetworktraining
11.6Problems
12MarkovChainsandTheirConvergence
12.1BasicPropertiesofaMarkovChain
12.1.1Chapman-Kolmogorovequation
12.1.2Convergencetostationarity
12.2CouplingMethodforCardShuffling
12.2.1Random-to-topshuffling
12.2.2Riffleshuffling
12.3ConvergenceTheoremforFinite-StateMarkovChains
12.4CouplingMethodforGeneralMarkovChain
12.5GeometricInequalities
12.5.1Basicsetup
12.5.2Poincareinequality
12.5.3Example:Simplerandomwalkonagraph
12.5.4Cheeger'sinequality
12.6FunctionalAnalysisforMarkovChains
12.6.1Forwardandbackwardoperators
12.6.2ConvergencerateofMarkovchains
12.6.3Maximalcorrelation
12.7BehavioroftheAverages
13SelectedTheoreticalTopics
13.1MCMCConvergenceandConvergenceDiagnostics
13.2IterativeConditionalSampling
13.2.1Dataaugmentation
13.2.2Random-scanGibbssampler
13.3ComparisonofMetropolis-TypeAlgorithms
13.3.1Peskun'sordering
13.3.2ComparingschemesusingPeskun'sordering
13.4EigenvalueAnalysisfortheIndependenceSampler
13.5PerfectSimulation
13.6ATheoryforDynamicWeighting
13.6.1Definitions
13.6.2Weightbehaviorunderdifferentscenarios
13.6.3Estimationwithweightedsamples
13.6.4Asimulationstudy
ABasicsinProbabilityandStatistics
A.1BasicProbabilityTheory
A.1.1Experiments,events,andprobability
A.1.2Univariaterandomvariablesandtheirproperties
A.1.3Multivariaterandomvariable
A.1.4Convergenceofrandomvariables
A.2StatisticalModelingandInference
A.2.1Parametricstatisticalmodeling
A.2.2Frequentistapproachtostatisticalinference
A.2.3Bayesianmethodology
A.3BayesProcedureandMissingDataFormalism
A.3.1Thejointandposteriordistributions
A.3.2Themissingdataproblem
A.4TheExpectation-MaximizationAlgorithm
References
AuthorIndex
SubjectIndex111

下载地址

下载说明

本站资源使用网盘存储,可以一键转存和下载,下载速度一流;
本站资源均为RAR/ZIP 格式压缩,为确保资源能够正常使用,需使用【WinRAR】等进行解压;
本站资源解压后格式为PDF的,为保证正常使用,推荐【Adobe Reader 8.0】以上版本进行阅读;
如果您发现文件无法下载,请稍后再次尝试;若依然如此,请到 报错页面 告诉我们。
本站提供的标准文件一般为PDF格式,如果您需要Word版本,可搜索【PDF转换成Word软件】进行转换;
本站资料均为网上收集,若无意中侵犯了您的版权,请与我们联系;
本站资料仅供学习交流之用,请下载后24小时内删除。正式场合使用,请购买正版;